Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Int J Infect Dis ; 116: 74-79, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1587623

ABSTRACT

OBJECTIVES: Mounting evidence links hyperinflammation in gravely ill patients to low serum iron levels and hyperferritinemia. However, little attention has been paid to other iron-associated markers such as transferrin. The aim of this study was to investigate the association of different iron parameters in severe COVID-19 and their relation to disease severity. SUBJECTS AND METHODS: This study involved 73 hospitalized patients with positive test results for SARS-CoV-2. Patients were classified into two groups according to symptom severity: mild and severe. Blood levels of anti-SARS-CoV-2 antibodies, interleukin 6 (IL-6), C-reactive protein (CRP), and iron-related biomarkers were measured. RESULTS: The results revealed a significant increase in IL-6, CRP, and ferritin levels and decreased transferrin and iron levels in severe COVID-19. Transferrin negatively predicted variations in IgM and IgG levels (P < 0.001), as well as 34.4% and 36.6% increase in IL-6 and CRP levels, respectively (P < 0.005). Importantly, transferrin was the main negative predictor of ferritin levels, determining 22.7% of serum variations (P < 0.001). CONCLUSION: Reduced serum transferrin and iron levels, along with the increased CRP and high ferritin, were strongly associated with the heightened inflammatory and immune state in COVID-19. Transferrin can be used as a valuable predictor of increased severity and progression of the disease.


Subject(s)
COVID-19 , Transferrin , Biomarkers , C-Reactive Protein/metabolism , COVID-19/diagnosis , Humans , Inflammation , SARS-CoV-2 , Transferrin/analysis , Transferrin/metabolism
2.
Mitochondrion ; 54: 1-7, 2020 09.
Article in English | MEDLINE | ID: covidwho-608933

ABSTRACT

The COVID-19 pandemic caused by the coronavirus (SARS-CoV-2) has taken the world by surprise into a major crisis of overwhelming morbidity and mortality. This highly infectious disease is associated with respiratory failure unusual in other coronavirus infections. Mounting evidence link the accelerated progression of the disease in COVID-19 patients to the hyper-inflammatory state termed as the "cytokine storm" involving major systemic perturbations. These include iron dysregulation manifested as hyperferritinemia associated with disease severity. Iron dysregulation induces reactive oxygen species (ROS) production and promotes oxidative stress. The mitochondria are the hub of cellular oxidative homeostasis. In addition, the mitochondria may circulate "cell-free" in non-nucleated platelets, in extracellular vesicles and mitochondrial DNA is found in the extracellular space. The heightened inflammatory/oxidative state may lead to mitochondrial dysfunction leading to platelet damage and apoptosis. The interaction of dysfunctional platelets with coagulation cascades aggravates clotting events and thrombus formation. Furthermore, mitochondrial oxidative stress may contribute to microbiota dysbiosis, altering coagulation pathways and fueling the inflammatory/oxidative response leading to the vicious cycle of events. Here, we discuss various cellular and systemic incidents caused by SARS-CoV-2 that may critically impact intra and extracellular mitochondrial function, and contribute to the progression and severity of the disease. It is crucial to understand how these key modulators impact COVID-19 pathogenesis in the quest to identify novel therapeutic targets that may reduce fatal outcomes of the disease.


Subject(s)
Betacoronavirus , Coronavirus Infections/complications , Mitochondria/metabolism , Mitochondrial Diseases/virology , Pneumonia, Viral/complications , Blood Coagulation Disorders/etiology , Blood Platelets , COVID-19 , Cardiolipins/metabolism , Dysbiosis/pathology , Homeostasis , Humans , Inflammation/metabolism , Iron , Oxidative Stress , Pandemics , SARS-CoV-2 , Thrombocytopenia
3.
Int J Infect Dis ; 97: 303-305, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-459066

ABSTRACT

The coronavirus 2 (SARS-CoV-2) pandemic is viciously spreading through the continents with rapidly increasing mortality rates. Current management of COVID-19 is based on the premise that respiratory failure is the leading cause of mortality. However, mounting evidence links accelerated pathogenesis in gravely ill COVID-19 patients to a hyper-inflammatory state involving a cytokine storm. Several components of the heightened inflammatory state were addressed as therapeutic targets. Another key component of the heightened inflammatory state is hyper-ferritinemia which reportedly identifies patients with increased mortality risk. In spite of its strong association with mortality, it is not yet clear if hyper-ferritinemia in COVID-19 patients is merely a systemic marker of disease progression, or a key modulator in disease pathogenesis. Here we address implications of a possible role for hyper-ferritinemia, and altered iron homeostasis in COVID-19 pathogenesis, and potential therapeutic targets in this regard.


Subject(s)
Coronavirus Infections/pathology , Iron Overload/virology , Pneumonia, Viral/pathology , Betacoronavirus , COVID-19 , Coronavirus Infections/mortality , Cytokine Release Syndrome/virology , Ferroptosis , Hepcidins/physiology , Humans , Inflammation , Iron/blood , Mitochondria/pathology , Mitochondria/physiology , Oxidative Stress , Pandemics , Pneumonia, Viral/mortality , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL